Section 4: Free Fall and Acceleration Due to Gravity

Remember: In the kinematics formulae, the variables represent vector quantities and not scalar quantities.

Examples

1. A ball takes 2.00 s to reach the water when dropped from a bridge. Calculate the displacement of the ball.
2. An 8.0 kg object is dropped from a height of 6.5 m above the ground. What is the object's velocity after 0.75 s ?
3. An athlete in good physical condition can land on the ground at a speed of up to $12 \mathrm{~m} / \mathrm{s}$ without injury. Calculate the maximum height from which he/she can jump without injury.
4. A rocket is launched from rest with a uniform vertical acceleration of $15.0 \mathrm{~m} / \mathrm{s}^{2}$. After 4.80 ns , the engines shut off.
A) To what height has the rocket risen in 4.80 s ?
B) How much higher will the rocket rise after the engines shut off?
5. An object is thrown up into the air with a speed of $18 \mathrm{~m} / \mathrm{s}$.
A) How long will it take the ball to return to the same position?
B) What is the maximum height the ball will reach?
6. A ball is dropped from a helicopter from a height of 50.0 m . When the ball was dropped, the helicopter was moving upward with a velocity of $30.0 \mathrm{~m} / \mathrm{s}$. How long would it take the object to hit the ground?
