Unit 1
 Part 2 - Kinematic Equations

Section 1: Acceleration (Text: 2.1 and 2.3)

- When the speed of an object changes (slows down or speeds up) or the direction of an object changes, the object is accelerating.

Acceleration: is defined as the rate of change of velocity. Therefore, it is a vector quantity and directions are important.

$$
\begin{aligned}
& \text { Acceleration }=\frac{\text { Change in Velocity }}{\text { Time Interval }} \\
& \vec{a}=\frac{\Delta \vec{v}}{\Delta t}=\frac{\vec{v}_{2}-\vec{v}_{1}}{t_{2}-t_{1}} \quad \text { and if } \mathrm{t}_{1}=0, \text { then } \\
& \vec{a}=\frac{\vec{v}_{2}-\vec{v}_{1}}{t}
\end{aligned}
$$

where: \vec{v}_{1} is the initial velocity of the object in km / h or m / s
\vec{v}_{2} is the velocity of the object some time later in km / h or m / s
t is the time in h or s
\vec{a} is the acceleration of the object in $\mathrm{km} / \mathrm{h}^{2}$ or $\mathrm{m} / \mathrm{s}^{2}$
The SI unit for velocity is \mathbf{m} / \mathbf{s} and the unit for time is \mathbf{s}. Hence, the unit for acceleration is $\mathbf{m} / \mathbf{s} / \mathbf{s}$ or $\mathbf{m} / \mathbf{s}^{2}$. Other units for acceleration include $\mathrm{km} / \mathrm{h}^{2}, \mathrm{~cm} / \mathrm{s}^{2}, \mathrm{~cm} / \mathrm{min}^{2}, \mathrm{~km} / \mathrm{h} / \mathrm{s}$.

Question: What does and acceleration of $3 \mathrm{~m} / \mathrm{s}^{\mathbf{2}}[\mathrm{E}]$ mean?

Question: What does and acceleration of $6 \mathrm{~km} / \mathrm{h} / \mathrm{s}[\mathrm{E}]$ mean?

Acceleration is an example of non-uniform motion. There are $\mathbf{3}$ types of acceleration: constant, average, and instantaneous acceleration.

1. Constant Acceleration: An object has constant acceleration if it changes its velocity by equal amounts in equal intervals of time. Example: a pear falls from a tree.
2. Average acceleration: It is used to describe acceleration when the velocity changes in a non-uniform way.
Example: A car that accelerates to a velocity of $50 \mathrm{~km} / \mathrm{h}$
[W] from a traffic light has its greatest acceleration at the start. As the car goes faster and faster, its acceleration decreases until the velocity reaches the constant velocity of $50 \mathrm{~km} / \mathrm{h}$ [W]. At this time its acceleration drops to zero.

NOTE: Average acceleration and constant acceleration are related. The average acceleration for a time interval is the same as the constant acceleration an object would need if it were to change velocity by an equal amount each time. Therefore, both use the same formula.
3. Instantaneous acceleration: It is acceleration at a specific instant of time and is found by calculating the tangent to the curve on a velocity-time graph.

Rearrangements of the formula $\vec{a}=\frac{\vec{v}_{2}-\vec{v}_{1}}{t}$

Examples:

1. A motorcycle, starting from rest and undergoing uniform acceleration reaches a velocity of $20.0 \mathrm{~m} / \mathrm{s}$ [N$]$ in 8.0 s . Find its average acceleration.
2. A car acceleration at a constant rate from $40 \mathrm{~km} / \mathrm{h}[\mathrm{E}]$ to $90 \mathrm{~km} / \mathrm{h}[\mathrm{E}]$ in 5.0 s . What is its acceleration?
3. A airline flight is behind schedule, so the pilot increases the air velocity from $135 \mathrm{~m} / \mathrm{s}$ [W] in 2.0 min . What is the airplane's acceleration in $\mathrm{m} / \mathrm{s}^{2}$?
4. A cyclist, initially traveling at $14 \mathrm{~m} / \mathrm{s}$ [S], brakes smoothly and stops in 4.0 s . What is his average acceleration?
5. Judy, a sprinter, has a velocity of $6.0 \mathrm{~m} / \mathrm{s}[\mathrm{S}]$ at $\mathrm{t}=3.0 \mathrm{~s}$. Five seconds later, she is moving northat $4.0 \mathrm{~m} / \mathrm{s}$. Calculate Judy's acceleration.
6. A car traveling at $12 \mathrm{~m} / \mathrm{s}$ accelerates at $2.34 \mathrm{~m} / \mathrm{s}$ for 11 s . What is the final velocity of the car?
7. After accelerating at a rate of $3.2 \mathrm{~m} / \mathrm{s}^{2}$ for 3.8 s , a car's final velocity is $30.2 \mathrm{~m} / \mathrm{s}$. What is its initial velocity?
8. A spacecraft traveling at a velocity of $1210 \mathrm{~m} / \mathrm{s}$ is uniformly slowing down at a rate of $150 \mathrm{~m} / \mathrm{s}^{2}$. If the acceleration lasts for 8.68 s , what is the final velocity of the spacecraft? Explain your results in words.
