Section 3.4: Airplane Navigation

$$_{p}\overrightarrow{v_{e}} =_{p}\overrightarrow{v_{a}} +_{a}\overrightarrow{v_{e}}$$

p ^v a velocity of airspred heading	Symbol	Velocity Vector	Speed	Direction
plane with heading	${}_{p}\mathcal{V}_{\mathbf{e}}$	plane wrt	s pe d	tracking
velocity of wind wind .	${}_{p}\mathcal{V}_{\mathbf{a}}$	velocity of plane wit	Girspred	heading
" Wind wit speed velocity	${}_{a}\mathcal{V}_{e}$	velocity of Wind Wrt	wind speed	wind. Velocity

tarth

Type 1

 An airplane has an air speed of 240 km/h and a heading of east. An 80.0 km/h wind is blowing from the north.
A) Calculate the plane's ground speed and tracking.

B) What is the plane's displacement after 2.3 hours.

d= N. E = (250 Km/h [E18°S])(2.32) = 580 Km [E18°S]

Typez tracking 2. A pilot wants to fly due South. The airplane has an air speed of 2.0×10^2 km/h. There is a 62 km/h wind blowing from the East. A) Determine the heading the pilot should use. a = 200 km/h (?. { = 62 km/h [w] 5 2001 Sin 0= 6215m 200 518 $\Theta = 18^{\circ}$ B) Determine the pilot's ground speed. $V_{e}^{2} = (200 \text{ km} | h)^{2} - (62 \text{ km} | h)^{2}$ $P_{e}^{2} = (200 \text{ km} | h)^{2} - (62 \text{ km} | h)^{2}$

> C) How long will it take him to get to his destination which is 350 km [S] of his initial position?