Section 1.4: Graphing Uniform Motion

In this lesson you will

- construct $\vec{d} t$ and $\vec{v} t$ graphs for an object undergoing uniform motion.
- determine the <u>starting position and the average velocity</u> of an object undergoing uniform motion given its <u>displacement-time graph</u>
- determine the average velocity and the displacement of an object undergoing uniform motion given it velocitytime graph

Motion Graphs with Direction

- I) Uniform Motion
- A) Displacement Time Graphs

On d -t graphs
slope represents velocity. (is speed + direction) steeper slope - greater speed. positive slope - motion to the right or up [E or N]

negative slope - motion to the left or down [W or S]

On $\vec{v} - t$ graphs,

- velocity is indicated by the y-intercept.
 positive y-intercept motion to the right or up [E or N] negative y-intercept - motion to the left or down [W or S]
- **displacement** is the **area** "under" the graph (between the graph and the time axis).

Displacement-Time and Velocity-Time Graphs

Stopped	\vec{d} -t graphs	\vec{v} -t graphs	Velocity	Acceleration	Example
Constant velocity			$\vec{v} = 0$	$\vec{a} = 0$	<u> </u>
			$\vec{v} = 0$	$\vec{a} = 0$	R
			$\vec{v} > 0$	$\vec{a} = 0$	
			$\vec{\nu} < 0$	$\vec{a} = 0$	

Examples

1. a) Graph a position-time graph for the following data.

Time (s)	Position (m)	
nine (s)	Position (iii)	-1 (m) 100^{-1}
0	0	100
1.0	15	
2.0	30	80
3.0	45	
4.0	60	
5.0	75	60
6.0	90	
7.0	105	
		20
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
		+(s)

b) Find the velocity of the object.

c) Describe the motion of the object. The object is moving to the right at 15m/s. 2. a) What is the position of the object at 4.5s?

- b) What is the object's displacement between 2.0 s and 5.0 s?
 - c) What is the velocity of the object?

3. Compute the total displacement .Compute the average velocity.

 A cyclist poddles her bike at 5m/s for 3 seconds and then at 2 m/s for 2 seconds. Produce both a d-t and a ¬t graph of the motion.

Draw a position-time and velocity-time graph for a runner who moves at 3.0 m/s for 5.0 s, then 1.0 m/s. for 10.0 s and finally -2.5 m/s for 10.0 s.

