Review - Kinematic Equations

Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question.

 1.	In an emergency braking exercise, a student dri What is the car's acceleration during this time?	ver s (The	tops a car travelling at 83 km/h [W] in a time of 4.0 s. e answer is expressed in units of m/s ² .)		
	 A) 5.8 [W] B) 21 [E] C) 5.8 [E] 	D) E)	21 [W] -5.8 [E]		
 2.	An object is thrown vertically upward with a sp down at 15 m/s? (Air resistance is negligible.)	eed (of 25 m/s. How much time passes before it comes back		
	A) 1.0 s B) 4.1 s C) 9.8 s	D) E)	18 s 27 s		
 An object is thrown vertically upward at 18 m/s from a window and hits the ground 1 height of the window above the ground? (Air resistance is negligible.) 					
	A) 3.7 m	D)	37 m 41 m		
	C) 21 m	E)	41 111		
 4. How long does it take a car to slow down from a speed of 54 km/h to 32 km/h over a distance of 6 Answer in seconds.					
	A) 21	D)	2.7		
	B) 5.9 C) 5.4	E)	1.5		
 5. A jogger is running at 4.2 m/s when she begins to accelerate uniformly. If she runs a distance next 3.0 s, what is her new speed?					
	A) 17 m/s	D)	5.1 m/s		
	B) 14 m/s C) 7.7 m/s	E)	4.9 m/s		
 6.	How long will the object take to hit the ground 12 m				
	A) 3.8 s	D)	1.0 s		
	B) 3.1 s C) 2.0 s	E)	1.3 s		
 7.	A bullet accelerates uniformly along a barrel, exiting the gun in 24 ms with a speed of 196 m/s. The				
	acceleration of the bullet, expressed in units of (A) 1.7×10^5	metro	e per second squared, 1s 1.7×10^3		
	B) 1.8×10^4	E)	3.6×10^2		
	C) 8.2×10^3				
 8. A car accelerates at 2.7 m/s ² for 5.4 s, reaching a speed of 18 m/s. During the period of acceler travels a distance of					
	A) 1.8×10^2 m	D)	58 m		
	B) 1.4×10^2 m	E)	18 m		
	C) $9.0 \times 10^{6} \text{ m}$				

	9.	A toy car is moving at 13 cm/s when it begins accelerating at 1.4 cm/s ² . If the acceleration is uniform, what is the speed of the car after it has travelled a distance of 27 cm ²				
		A) 2.4×10^2 cm/s	D)	16 cm/s		
		B) 93 cm/s	E)	1.0×10^1 cm/s		
		C) 62 cm/s	-			
1	10. What distance does an object travel during a period of uniform acceleration ($a = 2.5 \text{ m/s}^2$) when its sp					
		changes from 35 m/s to 45 m/s?				
		A) $6.5 \times 10^2 \text{ m}$	D)	32 m		
		B) 3.2×10^2 m	E)	2.0 m		
		C) 1.6×10^2 m				
1	1.	 Three identical objects are thrown from the same thrown horizontally at 4.0 m/s, object B is throw air resistance is negligible, which object will ready and the object A B) object B C) object C D) objects B and C will land first and together E) all three will land at the same time 	e hei vn ho ach ti	ight through a window at the same time. Object A is prizontally at 8.0 m/s, and object C is simply dropped. If he ground first?		
1	2.	Over a period of 3.0 s a car's velocity changes f	rom	18 m/s [W] to 12 m/s [W]. What is the value of the car's		
		acceleration during this time?				
		A) $2.0 \text{ m/s}^2[\text{E}]$	D)	$10 \text{ m/s}^2[\text{E}]$		
		B) 10 m/s^2 [W]	E)	2.0 m/s [E]		
		C) 2.0 m/s^2 [W]	,			
1	3.	If an object accelerates at 6.2 m/s ² [N], how long will it take to reach a velocity of 25 m/s [N] if starting from rest?				
		A) 25 s	D)	0.25 s		
		B) 4.0 m/s	E)	4.0 s		
		C) 31 s	,			
1	4.	A car is driving along the highway behind a slower vehicle when it pulls out to pass. If the car's acceleration is uniform at 2.0 m/s^2 for 4.0 s and it reaches a speed of 28 m/s, what was its speed when it first pulled out to pass the slower vehicle?				
		A) 18 m/s	D)	24 m/s		
		B) 20 m/s	E)	26 m/s		
		C) 22 m/s				
1	5.	A motorcycle accelerates from rest at 6.0 m/s^2 . motion than during the first 3.0 s ?	How	much farther will it travel during the second 3.0 s of its		
		A) 98 m	D)	27 m		
		B) 81 m	E)	15 m		
		C) 54 m				
1	6.	An object is thrown vertically upward at 25.0 m m/c^{2} [down] what is the chief to velocity 2.0 c.	it experiences an acceleration due to gravity of 9.8			
		11/5 [down], what is the object's velocity 3.0 S I A) 22 m/s [down]		4 m/s [down]		
		$\frac{1}{22} \frac{1}{m^{2}} \frac{1}{m^$	Б) Е)	zero (it has hit the ground)		
		C) 4 m/s [up]	с)	zero (it has int the ground)		

17. A stone is thrown vertically downward with a speed of 10 m/s from a bridge. Accelerating under gravity (9.8 m/s²), the stone strikes the water 1.8 s later. From what height above the water was the stone thrown? (Assume 2 significant digits.)

D) 15 m

E) 3 m

D) 19 m

E) 10 m

- A) 50 m
- B) 34 m
- C) 27 m
- 18. A ball is thrown vertically downward from a window. Accelerating under gravity (9.8 m/s²), the ball hits the ground 2.6 s later with a speed of 20.0 m/s. From what height above the ground was it thrown?
 - A) 85 m
 - B) 39 m
 - C) 29 m

Problem

- 19. A box accidentally falls from the back of a truck and hits the ground with a speed of 15 m/s. It slides along the ground for a distance of 45 m before coming to rest. Determine
 - (a) the length of time the box slides before stopping
 - (b) the average acceleration of the box while it's sliding
 - (c) the time it takes to slide the last 10 m
- 20. Within 4.0 s of lift-off, a space shuttle reaches an altitude of 4.50×10^2 m, uniformly accelerating during the entire time.
 - (a) What is its acceleration?
 - (b) At what speed is the shuttle travelling when it reaches this altitude?
 - (c) How long would it take the shuttle to travel the next 450 m if it stops accelerating after 4.0 s?
- 21. A cyclist is travelling with a speed of 12.0 m/s when she applies the brakes. After slowing for 3.0 s, her speed has been reduced to 4.0 m/s.
 - (a) What distance does she travel during this time?
 - (b) What is her acceleration?
 - (c) If she continues braking, how much longer will it take her to stop?
 - (d) If she continues to travel with her new speed, how far will she travel during the next 3.0 s?
- 22. A ball is thrown vertically upward from a window that is 3.6 m above the ground. The ball's initial speed is 2.8 m/s and the acceleration due to gravity is 9.8 m/s^2 .
 - (a) What is the ball's speed when it hits the ground?
 - (b) How long after the first ball is thrown should a second ball be simply dropped from the same window so that both balls hit the ground at the same time?
- 23. A pedestrian is running at his maximum speed of 6.0 m/s trying to catch a bus that is stopped at a traffic light. When he is 16 m from the bus, the light changes and the bus pulls away from the pedestrian with an acceleration of 1.0 m/s^2 .

(a) Does the pedestrian catch the bus and, if so, how far does he have to run? (If not, what is the pedestrian's distance of closest approach?)

(b) How fast is the bus moving when the pedestrian catches it? (or at the distance of closest approach)

(c) On a single set of axes, plot the corresponding position-time graphs of both the bus and pedestrian to confirm your answer in (a).

24. What was the initial velocity of an object that moved 120 m in 5.60 s, reaching a final velocity of 15.0 m/s in that time? Was the object speeding up or slowing down?

- 25. A dragster accelerates from rest for a distance of 450 m at 14 m/s². A parachute is then used to slow it down to a stop. If the parachute gives the dragster an acceleration of 7.0 m/s², how far has the dragster travelled before stopping?
- 26. If 100.0 m sprinters accelerate form rest for 3.5 s at 2.8 m/s², how far have they run to this point? How long will it take them to complete their 100.0 m sprint, assuming they maintain their speed the rest of the way?
- 27. A car moving with a constant acceleration covers the distance between two points 60.0 m apart in 6.0 s. Its velocity as it passes the second point is 15.0 m/s.
 - (A) What was the speed at the first point?
 - (B) What is the constant acceleration
 - (C) How far behind the first point was the car at rest?
- 28. A car moves at 12 m/s for 30.0 seconds. It then accelerates at 1.5 m/s² for 8.00 seconds. Finally, it continues on at this top speed for another 12.0 seconds. Calculate the net displacement during the whole time interval
- 29. A sprinter who is running a 250 m race accelerates from rest at 7.5 m/s^2 for 1.2 s and maintains this speed for the remainder of the race. What is her time for the race?
- 30. A model rocket blasts off with a constant acceleration of 12.3 m/s^2 until its fuel runs out 10.2 s later. It then enters free fall for the remainder of its flight.
 - a) Calculate the maximum height above the ground reached by the model rocket.
 - b) Calculate the total time the rocket is in the air. (Careful: There are two different accelerations on the way up, but only one on the way down. This creates three parts to the motion.)
- 31.

A police car stopped at a set of lights has a speeder pass it at 100.0 km/h. If the police car can accelerate at 3.6 m/s^2 ,

- (A) how long does it take to catch the speeder?
- (B) how far would the police car have to go before it catches the speeder?
- (C) what would be its speed when it caught up with the speeder? Is this speed reasonable?
- 32. You are driving at a constant speed of 22 m/s, when a child suddenly steps into the path of your vehicle 52 m away. When you fully apply the brakes, your car slows down at a rate constant rate of 5.0 m/s². What is the **minimum reaction time** (**ie. how long does he have to apply the brakes**) that is required so that the child will not be hit?
- 33. A car is travelling along the highway at 95 km/h when the driver sees a moose crossing the road. About 0.50 s after he sees the moose he applies the brakes and stops the car. The braking acceleration of the car is -6.5 m/s². Calculate:
 - (a) the distance travelled by the car during the time period from the first sighting of the moose to the time the brakes are applied
 - (b) distance travelled after the brakes are applied
 - (c) total stopping distance.
- 34. An astronaut drops a feather from 1.2 m above the surface of the moon. If the acceleration of gravity on the moon is 1.62 m/s^2 , how long does it take the feather to hit the surface?

- 35. Thrilled by Romeo's emotion, Juliet jumps into the air with joy, at a velocity of 5.00 m/s. Rather than landing on the balcony, she misses and falls to the ground, 7.00 m below.
 - A) What will Juliet's impact speed with the ground be?
 - B) How long will it Juliet to hit the ground?
- 36. You are standing on a cliff that is 40.0 m above the water level and you throw a ball upward at 25.0 m/s.
 - A) With what speed will the ball hit the water?
 - B) How much time will elapse before it hits the water?
- 37. Number 69 pag 74 -75 in textbook