Section 2.6: Finding the x-intercepts of a Quadratic Functions **By Factoring**

We have already seen that we can find the x-intercepts of any quadratic function using the calculator.

We can also find the x-intercepts of some quadratic functions using factoring. We will study 4 types of factoring:

- Removing the Greatest Common Factor (GCF)
- Difference of Two Squares

$$a^2 - b^2 = (a - b)(a + b)$$

• Trinomials of the form $x^2 + bx + c$

(x ± __)(x ± __)
Find two numbers that multiply to give "c" and add to give "b".
Trinomials of the form ax² + bx + c using decomposition → box

Reminder:

Quadratic Equations

- Have the form $ax^2 + bx + c = 0$
- Solutions to a quadratic equation are called roots.
- To find the roots of a quadratic equation factor the equation and then solve for x.

Quadratic Functions

- Have the form $y = ax^2 + bx + c$
- Solutions to the quadratic function are called zeros or x-intercepts.
- To find the zeros or x-intercepts of a quadratic function, set y = 0(or f(x) = 0), factor the equation and then solve for x.
 - \star If the roots, zeros or x-intercepts of a quadratic equation are \star x = a and x = b, then the factors of the equation are (x-a) and (x-b). The equation in factored form is (x - a)(x - b) = 0. To simplify the equation - use the FOIL rule (i.e. Distributive Property twice).

I. Removing a Common Factor

Example: Find the roots of the following quadratic equations.

Example: Find the x-intercepts (or zeros) of the following quadratic functions.

$$O^{-}_{=} \frac{18}{18} \frac{18}{2} - \frac{13}{27} \frac{1}{2} \frac{1$$

D) $y = 12x^2 - 30x$

Example: Solve the following quadratic functions.

A) $5x^2 = -35x$ B) $16x^2 = 24x$

C)
$$-28x = -8x^2$$
 D) $21x^2 = -35x$