Section 1.4: Quadratic Sequences

As you have seen **arithmetic** sequences have a level one common difference (D_1) and the graph of an arithmetic sequence is linear. Its equation has the form $t_n = mn + b$.

The next type of sequence is a **quadratic sequence**. These sequences have a level two common difference.

Example {7, 11, 17, 25, 35, 47, ...}
$$D_{1}$$
 4 6 8 0 12
 P_{2}]]]]

A Quadratic sequence has an equation of the form $t_n = ax^2 + bx + c$. We will find the equation of a quadratic sequence using our calculator.

Example: Use the following diagram to answer the following questions.

A) List the first 5 terms of the sequences.

B) Determine if the sequence generated is arithmetic or quadratic.

Quadratic because D2 is constant.

Section1.4_Quadratic_Sequences_soln.notebook

Term Number (n)	Sequence Value (tn)
I	١
2	J
3	9
4	16
5	25

C) Create a table of values for the sequence.

D) Plot the graph of n vs. t_n .

Using your calculator to generate the equation of a quadratic sequence.

- 1. Press **Stat 1** to access the list creator/editor.
- 2. Enter the term number in L1.
- 3. Enter the term values in L2.
- 4. To determine the equation of the line of best fit for the data in the table press Stat ⇒Calc 5 Enter 2nd 1, 2nd 2, vars y-vars enter enter enter.
- 5. The equation of a quadratic function is $y = ax^2 + bx + c$. As a quadratic sequence we would instead express it as $t_n = an^2 + bn + c$

If we want to view the graph on our calculator we perform the following steps.

- 1. Press **2nd Y** = and select **ON** with the type of graph set to the first graph (a scatter plot). This will create a scatter plot of the data. Make sure the x-list is L1 and y-list is L2.
- 2. Press 2nd Mode to begin the calculation.
- 3. Press **zoom**, then down arrow key until you reach **9: zoomstat** enter to see the graph.
- 3. To automatically place the equation of the line of best fit into Y1 to draw its graph, press Stat Calc 5 2nd 1, 2nd 2, vars y-vars Enter Enter Enter.
- 4. Press Graph to see what the line of best fit looks like.

Example: Use the equation below to generate the first 4 terms of the sequence. Then determine if the sequence is <u>linear_quad</u>ratic or neither by creating a sequence of differences.

A) $t_n = 4n^2 - 2n + 3$ Sub. 1, 2, 3 + 4 into the
equation to find tistesta
$f = 4(n^2 - 2(n) + 3 + 3 + 4(n^2 - 2(n) + 3)$
$t_{12} = 1(y) - 2(y) + 3$ $t_{12} = 4(y) - 4(z) - 4(z) + 3$
$t_{1} = 4 - 3 + 3$ $t_{1} = 16 - 4 + 3$
$t = 5$ $t_{2 \ge 15}$
$t_{3} = 4(3)^{2} - 2(3)^{1}^{3} = t_{4} = 4(4)^{2} - 2(4) + 3$
$t_3 = 4(9) - 6 + 3$ $t_{y=} 4(16) - 8 + 3$
$t_3 = 36 - 6 + 3$ $t_4 = 64 - 8 + 3$
$L_3 = 59$
{ 5, 15, 33, 59 }
Di 10, 18, 26 Quedestie
D ₂ 8 8 grades
B) $t_n = 5 - 2n$
$t_{n=2n+5}$
$t_1 = -2(1) + 5 t_2 = -2(3) + 5 t_3 = -2(3) + 5$
$e_1 = -2+5$ = $-4+5$ [$e_3 = -4$
$t_{\mu} = -\beta(\mu) + 5$
ty=-8+5 23,1-1,-35
t + e - 3 = -2 - 2 - 2
C) $t_n = -3n^2 + 5n - 2$
$t = -3(1)^{2} + 5(1) - 2 = t_{12} - 3(2)^{2} + 5(2) - 2$
$t_{12} - 3(1) + 5 - 2$ $t_{12} - 3(4) + 10 - 2$
t1=-3+5-2 t3+10-2
$t_1 = 0$ $ t_2 = -4$
$t_{3} = -3(3)^{2} + 5(3) - 2$ $t_{4} = -3(4)^{2} + 5(4) - 2$
$t_{3^{2}}-3(9)+15-2$ $t_{4^{2}}-3(16)+20-2$
$t_{3} = -37 + 15 - 2$ $t_{4} = -48 + 20 - 2$
t_{4}
۲۰٫ ⁻ ۲٫-۲۲٫-۲۵۰۰۰۶
D, -4 -10 -16 Quedratic
Dr -6 -6

D) $t_n = 2n^2 - 6$

How can you tell if the equation is linear or quadratic just by looking at it?

* If the highest exponent on an ""n" town is "2" then if is quadratic. it. the equation has an N² term.

Avs:
$$t_n = 2n^2 + 4n - 1$$

B) $\{1^{t_1}, 3, 5, 7, 9, 11, ...\}$
D₁ $()$ a 2 a 2 Arithmetic(Linear)
 $t_n = d(n-1) + t_1$
 $t_n = d(n-1) + 1$

$$t_n = 2n - 2 + 1$$
$$t_n = 2n - 1$$

C) $\{4, -1, -10, -23, -40, -61, ...\}$ D, -5, -9, -13, -17, -21D₂ -4, -4, -4, -4 quadratic $t_n = -2n^2 + 1n + 5$

E) {5, 13.75, 20, 23.75, 25, 23.75,...}

$$D_1$$
 8.75, 6.25, 3.75, 1.25, -1.25
 D_2 -2.5 - 2.5 - 2.5
 $L_{n} = 1.25n^2 + 10.5n - 6.25$

Example: Create a quadratic sequence with the following properties.

$$\{6,7,13,20,33,53$$

 $t_n=t_1+d(n-1)$
 $[t_n=d(n-1)+t_1]$