Section 4.1 Mixed and Entire Radicals

Goal: Compare and express numerical radicals in equivalent forms.

May 9-10:17 AM

Nov 20-8:46 AM

Entire Radicals:

 $\sqrt{24}$

√50

Mixed Radicals:

6

5√2

When converting Entire radicals to Mixed Radicals, use perfect squares:

Nov 20-8:35 AM Dec 7-8:23 AM

Dec 7-8:26 AM Dec 7-8:33 AM

Dec 7-8:38 AM Dec 7-8:42 AM

Simplify $\sqrt{48}$

1. Find the *largest* perfect square that will divide evenly into the number under your radical sign.

(Perfect Squares: 1, 4, 9, 16, 25, 36, 49, ...)

- 2. Write the number under the radical as a product of the perfect square and its corresponding number.
- 3. Separate each number with its own radical sign.
- 4. Simplify.

Simplify $\sqrt{48}$ $\sqrt{48} \longrightarrow \text{Entire Radical}$ $= \sqrt{16 \bullet 3}$ $= \sqrt{16} \bullet \sqrt{3}$ $= 4 \bullet \sqrt{3}$ $= 4\sqrt{3} \longrightarrow \text{Mixed Radical}$

Nov 20-8:44 AM

Nov 20-9:14 AM

Note:

- If you cannot find a perfect square that divides evenly then it is already in simplest form.
- If you do not choose the *largest* perfect square, you will need to repeat the process.

Simplify
$$\sqrt{48}$$

$$= \sqrt{4 \cdot 12}$$

$$= \sqrt{4} \cdot \sqrt{12}$$

$$= 2\sqrt{12} \quad \text{Not as Simple as Possible}$$

$$= 2\sqrt{4 \cdot 3}$$

$$= 2\sqrt{4} \cdot \sqrt{3}$$

$$= 2 \cdot 2\sqrt{3}$$

$$= 4\sqrt{3}$$

or:

Write the radicand as a product of its prime factors.

Group the factors in multiples of the index number.

Simplify.

$$\sqrt{48} = \sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 3}$$

$$= \sqrt{2^4 \cdot 3}$$

$$= 2^2 \sqrt{3}$$

$$= 4\sqrt{3}$$

Dec 5-12:59 PM

$$= \sqrt{3^{2} \cdot 7}$$

$$= \sqrt{3^{2} \cdot 7}$$

$$= \sqrt{9.7}$$

$$= \sqrt{63}$$

$$= \sqrt{80}$$

Dec 7-8:45 AM

Dec 7-8:46 AM

Writing Radicals in Simplest Form

Simplify each radical.

1.
$$\sqrt{50}$$

$$\sqrt{50} = \sqrt{25 \bullet 2} = 5\sqrt{2}$$

2.
$$\sqrt{98}$$

$$\sqrt{98} = \sqrt{49 \bullet 2} = 7\sqrt{2}$$

Writing Mixed Radicals as Entire Radicals

Write each mixed radical as an entire radical.

a)
$$4\sqrt{3}$$

a)
$$4\sqrt{3}$$
 $4\sqrt{3} = \sqrt{4^2 \cdot 3} = \sqrt{16 \cdot 3} = \sqrt{48}$

b)
$$2\sqrt[5]{2}$$

b)
$$2\sqrt[5]{2}$$
 $2\sqrt[5]{2} = \sqrt[5]{2^5 \cdot 2} = \sqrt[5]{32 \cdot 2} = \sqrt[5]{64}$

Write the following as a mixed or entire radical.

$$\sqrt[3]{54}$$
 $\sqrt[3]{3 \times 3 \times 3 \times 3}$
 $=\sqrt[3]{3}$
 $=\sqrt[3]{3}$

Nov 20-8:45 AM

Nov 20-9:27 AM

Which is larger?

$$3\sqrt{5}$$
 or $4\sqrt{3}$

To compare like radicals, rewrite the radicals in equivalent forms.

Nov 20-9:37 AM

To compare like radicals, rewrite the radicals in equivalent forms.

Arrange the following from least to greatest.

 $2\sqrt{5}$, $\sqrt{59}$, $4\sqrt[3]{2}$, $\sqrt[4]{48}$

To compare unlike radicals, you can write the radicals as decimals and compare.

Order the following numbers from least to greatest: $5, 3\sqrt{3}, 2\sqrt{6}, \sqrt{23}$

Nov 20-9:31 AM

Nov 27-10:59 AM

Every positive number has two roots.

Ex. The square root of 49 = 7 or -7

 $\sqrt{49} = 7$ is called the principal square

 $-\sqrt{49} = -7$ is called the secondary square

The principal (positive) square root is noted as

 \sqrt{a}

The negative square root is noted as

 $-\sqrt{a}$

Nov 21-8:42 AM Nov 27-11:06 AM

In what situations would it make sense only to use the principal

square root?

 $leg^{2} + leg^{2} = hypotenuse^{2}$ $5^{2} + 7^{2} = x^{2}$ $25 + 49 = x^{2}$ $74 = x^{2}$ $\sqrt{74} = x$

 $c^{2} = a^{2} + b^{2} - 2ab \cos C$ $x^{2} = 10^{2} + 9^{2} - 2(10)(9) \cos(47^{\circ})$ $x^{2} = 100 + 81 - 180 \cos(47^{\circ})$ $x^{2} = 181 - 180(.6819)$ $x^{2} = 58.2403$ $(x \approx 7.632)$

The domain of a square root function is limited to values for which the function has meaning.

Complete the following chart and state any restrictions on the function.

Nov 27-8:27 AM

Nov 27-8:32 AM

х	\sqrt{x}	$\frac{1}{x}$	$\frac{1}{\sqrt{x}}$	$\sqrt{x-1}$	$\sqrt{x+1}$	$\frac{1}{\sqrt{x-1}}$	$\frac{1}{\sqrt{x+1}}$
-3							
-2							
-1							
0							
1							
2							
3							

- What values of x are undefined?
- Is the restriction different if the radical expression is in the denominator?

Why is the domian of $\sqrt{2x-5}$, $x \ge \frac{5}{2}$,

while the domain of $\frac{1}{\sqrt{2x-5}}$ is $x > \frac{5}{2}$?

	h		
4.1 Assignment: Nelson Foundations of Mathematics 11, Sec 4.1, pg, 182-183			
	l .		
Questions: 1-12, 15, 17	l .		
200000000000000000000000000000000000000	l .		
	l .		
	l .		
	l .		
	l .		
	l .		
	l .		
	l .		
	l .		
	l .		
	l .		
	l .		
	l		
	l		

Jun 22-8:44 AM Nov 20-9:33 AM